Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376465

RESUMO

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Epigenômica , Humanos , Divisão Celular , Heterocromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Linhagem Celular
2.
Hum Mol Genet ; 32(9): 1439-1456, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36458887

RESUMO

Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is in most cases caused by mutations in either DNA methyltransferase (DNMT)3B, zinc finger and BTB domain containing 24, cell division cycle associated 7 or helicase lymphoid-specific. However, the causative genes of a few ICF patients remain unknown. We, herein, identified ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) as a novel causative gene of one such patient with atypical symptoms. This patient is a compound heterozygote for two previously unreported mutations in UHRF1: c.886C > T (p.R296W) and c.1852C > T (p.R618X). The R618X mutation plausibly caused nonsense-mediated decay, while the R296W mutation changed the higher order structure of UHRF1, which is indispensable for the maintenance of CG methylation along with DNMT1. Genome-wide methylation analysis revealed that the patient had a centromeric/pericentromeric hypomethylation, which is the main ICF signature, but also had a distinctive hypomethylation pattern compared to patients with the other ICF syndrome subtypes. Structural and biochemical analyses revealed that the R296W mutation disrupted the protein conformation and strengthened the binding affinity of UHRF1 with its partner LIG1 and reduced ubiquitylation activity of UHRF1 towards its ubiquitylation substrates, histone H3 and proliferating cell nuclear antigen -associated factor 15 (PAF15). We confirmed that the R296W mutation causes hypomethylation at pericentromeric repeats by generating the HEK293 cell lines that mimic the patient's UHRF1 molecular context. Since proper interactions of the UHRF1 with LIG1, PAF15 and histone H3 are essential for the maintenance of CG methylation, the mutation could disturb the maintenance process. Evidence for the importance of the UHRF1 conformation for CG methylation in humans is, herein, provided for the first time and deepens our understanding of its role in regulation of CG methylation.


Assuntos
Histonas , Doenças da Imunodeficiência Primária , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Células HEK293 , Histonas/genética , Histonas/metabolismo , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Instabilidade Cromossômica/genética , Instabilidade Cromossômica/fisiologia , Centrômero/genética , Centrômero/metabolismo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Face/anormalidades , Genoma Humano/genética , Genoma Humano/fisiologia
4.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916664

RESUMO

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


Assuntos
Metilação de DNA/genética , Doenças Genéticas Inatas/genética , Histonas/genética , Mutação , Doenças Raras/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/genética , Doenças Raras/metabolismo
5.
Sci Rep ; 10(1): 17865, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082427

RESUMO

Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome is a rare autosomal recessive disorder that is caused by mutations in either DNMT3B, ZBTB24, CDCA7, HELLS, or yet unidentified gene(s). Previously, we reported that the CDCA7/HELLS chromatin remodeling complex facilitates non-homologous end-joining. Here, we show that the same complex is required for the accumulation of proteins on nascent DNA, including the DNMT1/UHRF1 maintenance DNA methylation complex as well as proteins involved in the resolution or prevention of R-loops composed of DNA:RNA hybrids and ssDNA. Consistent with the hypomethylation state of pericentromeric repeats, the transcription and formation of aberrant DNA:RNA hybrids at the repeats were increased in ICF mutant cells. Furthermore, the ectopic expression of RNASEH1 reduced the accumulation of DNA damage at a broad range of genomic regions including pericentromeric repeats in these cells. Hence, we propose that hypomethylation due to inefficient DNMT1/UHRF1 recruitment at pericentromeric repeats by defects in the CDCA7/HELLS complex could induce pericentromeric instability, which may explain a part of the molecular pathogenesis of ICF syndrome.


Assuntos
Centrômero , Dano ao DNA/fisiologia , DNA Helicases/fisiologia , DNA/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Face/anormalidades , Células HEK293 , Humanos , Proteínas Nucleares/genética , Hibridização de Ácido Nucleico , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética
6.
Hum Mol Genet ; 29(19): 3197-3210, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916696

RESUMO

The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Fibroblastos/patologia , Doenças da Imunodeficiência Primária/patologia , Telômero/fisiologia , Fatores de Transcrição/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Face/patologia , Fibroblastos/metabolismo , Humanos , Camundongos , Doenças da Imunodeficiência Primária/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica
7.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
8.
Clin Genet ; 95(2): 210-220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456829

RESUMO

Alterations in epigenetic landscapes are hallmarks of many complex human diseases, yet, it is often challenging to assess the underlying mechanisms and causal link with clinical manifestations. In this regard, monogenic diseases that affect actors of the epigenetic machinery are of considerable interest to learn more about the etiology of complex traits. Spectacular breakthroughs in medical genetics are largely the result of advances in genome-wide approaches to identify genomic and epigenomic alterations in patients. These approaches have enabled the identification of an ever-increasing number of hereditary disorders caused by defects in the establishment of epigenetic marks early during development or in the perpetuation of such marks at later stages. We focus our review on particular cases where DNA methylation landscapes are altered at the genome scale, whether it is a direct consequence of mutations in DNA methyltransferases (DNMT) or that it reflects initial alterations of chromatin states or guiding factors caused by mutations in chromatin modifiers or transcription factors. Collectively, increased knowledge of these rare diseases will add to our understanding of the genetic determinants of DNA methylation in humans. Moreover, investigating how perturbations to these determinants affect genome function has far-reaching potential to understand various complex human diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Doenças Raras/genética , Animais , Cromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Mutação , Doenças Raras/diagnóstico , Fatores de Transcrição/metabolismo
9.
J Clin Invest ; 129(1): 78-92, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307408

RESUMO

Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Helicases/metabolismo , Metilação de DNA , Face/anormalidades , Síndromes de Imunodeficiência/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Apoptose/genética , Centrômero/genética , Centrômero/metabolismo , Centrômero/patologia , Segregação de Cromossomos/genética , Ilhas de CpG , Dano ao DNA , DNA Helicases/genética , Face/patologia , Feminino , Células HEK293 , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Masculino , Proteínas Nucleares/genética , Doenças da Imunodeficiência Primária
10.
Hum Mol Genet ; 27(20): 3568-3581, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010917

RESUMO

Human telomeres and adjacent subtelomeres are packaged as heterochromatin. Subtelomeric DNA undergoes methylation during development by DNA methyltransferase 3B (DNMT3B), including the CpG-rich promoters of the long non-coding RNA (TERRA) embedded in these regions. The factors that direct DNMT3B methylation to human subtelomeres and maintain this methylation throughout lifetime are yet unknown. The importance of subtelomeric methylation is manifested through the abnormal telomeric phenotype in Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome type 1 patients carrying mutations in DNMT3B. Patient cells demonstrate subtelomeric hypomethylation, accompanied by elevated TERRA transcription, accelerated telomere shortening and premature senescence of fibroblasts. ICF syndrome can arise due to mutations in at least three additional genes, ZBTB24 (ICF2), CDCA7 (ICF3) and HELLS (ICF4). While pericentromeric repeat hypomethylation is evident in all ICF syndrome subtypes, the status of subtelomeric DNA methylation had not been described for patients of subtypes 2-4. Here we explored the telomeric phenotype in cells derived from ICF2-4 patients with the aim to determine whether ZBTB24, CDCA7 and HELLS also play a role in establishing and/or maintaining human subtelomeric methylation. We found normal subtelomeric methylation in ICF2-4 and accordingly low TERRA levels and unperturbed telomere length. Moreover, depleting the ICF2-4-related proteins in normal fibroblasts did not influence subtelomeric methylation. Thus, these gene products are not involved in establishing or maintaining subtelomeric methylation. Our findings indicate that human subtelomeric heterochromatin has specialized methylation regulation and highlight the telomeric phenotype as a characteristic that distinguishes ICF1 from ICF2-4.


Assuntos
Anormalidades Múltiplas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/metabolismo , Adolescente , Adulto , Linhagem Celular , Centrômero , Criança , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/metabolismo , Face/anormalidades , Fibroblastos , Heterocromatina/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Lactente , Recém-Nascido , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Telômero/metabolismo , Adulto Jovem
11.
Hum Mol Genet ; 27(14): 2409-2424, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659838

RESUMO

Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromosomal instability. It is caused by mutations in the de novo DNA methyltransferase DNMT3B in about half of the patients (ICF1). In the remainder, the striking identification of mutations in factors devoid of DNA methyltransferase activity, ZBTB24 (ICF2), CDCA7 (ICF3) or HELLS (ICF4), raised key questions about common or distinguishing DNA methylation alterations downstream of these mutations and hence, about the functional link between the four factors. Here, we established the first comparative methylation profiling in ICF patients with all four genotypes and we provide evidence that, despite unifying hypomethylation of pericentromeric repeats and a few common loci, methylation profiling clearly distinguished ICF1 from ICF2, 3 and 4 patients. Using available genomic and epigenomic annotations to characterize regions prone to loss of DNA methylation downstream of ICF mutations, we found that ZBTB24, CDCA7 and HELLS mutations affect CpG-poor regions with heterochromatin features. Among these, we identified clusters of coding and non-coding genes mostly expressed in a monoallelic manner and implicated in neuronal development, consistent with the clinical spectrum of these patients' subgroups. Hence, beyond providing blood-based biomarkers of dysfunction of ICF factors, our comparative study unveiled new players to consider at certain heterochromatin regions of the human genome.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Síndromes de Imunodeficiência/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Instabilidade Cromossômica/genética , Metilação de DNA/genética , Feminino , Genoma Humano/genética , Genótipo , Heterocromatina/genética , Humanos , Síndromes de Imunodeficiência/fisiopatologia , Masculino , Mutação , Neurogênese/genética
12.
Sci Rep ; 7: 42520, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186195

RESUMO

Centromeres are chromosomal domains essential for genomic stability. We report here the remarkable transcriptional and epigenetic perturbations at murine centromeres in genotoxic stress conditions. A strong and selective transcriptional activation of centromeric repeats is detected within hours. This is followed by disorganization of centromeres with striking delocalization of nucleosomal CENP-A, the key determinant of centromere identity and function, in a mechanism requiring active transcription of centromeric repeats, the DNA Damage Response (DDR) effector ATM and chromatin remodelers/histone chaperones. In the absence of p53 checkpoint, activated transcription of centromeric repeats and CENP-A delocalization do not occur and cells accumulate micronuclei indicative of genomic instability. In addition, activated transcription and loss of centromeres identity are features of permanently arrested senescent cells with persistent DDR activation. Together, these findings bring out cooperation between DDR effectors and loss of centromere integrity as a safeguard mechanism to prevent genomic instability in context of persistent DNA damage signalling.


Assuntos
Senescência Celular/genética , Proteína Centromérica A/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Estresse Fisiológico/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Dano ao DNA , DNA Satélite , Histonas/metabolismo , Camundongos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
13.
Nat Commun ; 8: 14015, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117327

RESUMO

DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction.


Assuntos
Dano ao DNA/genética , DNA/metabolismo , Face/anormalidades , Síndromes de Imunodeficiência/genética , RNA Longo não Codificante/metabolismo , Telômero/genética , Linhagem Celular , Instabilidade Cromossômica/genética , DNA/genética , Humanos , Síndromes de Imunodeficiência/sangue , Linfócitos , Cultura Primária de Células , Doenças da Imunodeficiência Primária , RNA Longo não Codificante/genética , Sequências Repetitivas de Ácido Nucleico/genética , Ribonuclease H/metabolismo , Encurtamento do Telômero/genética
14.
Cancer Res ; 77(1): 62-73, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815388

RESUMO

Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.


Assuntos
Aneuploidia , Transformação Celular Neoplásica/genética , Instabilidade Genômica/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Neoplasias/genética , Proteínas Repressoras/genética , Animais , Western Blotting , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Cutâneas/genética
16.
J Clin Immunol ; 36(2): 149-59, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26851945

RESUMO

PURPOSE: Autosomal recessive deficiencies of DNMT3B or ZBTB24 account for two-thirds of cases of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). This primary immunodeficiency (PID) is characterized mainly by an antibody deficiency, facial abnormalities and centromeric instability. We analyzed the national cohort of patients with ICF syndrome with the aim of providing a more detailed description of the phenotype and management of patients with ICF syndrome. METHODS: Demographic, genetic, immunological, and clinical features were recorded for each patient. RESULTS: In the French cohort, seven of the nine patients carried DNMT3B mutations, six of which had never been described before. One patient had compound heterozygous ZBTB24 mutations. All patients were found to lack CD19(+)CD27(+) memory B cells. This feature is a major diagnostic criterion for both ICF1 and ICF2. Patients suffered both bacterial and viral infections, and three patients developed bronchiectasis. Autoimmune manifestations (hepatitis, nephritis and thyroiditis) not previously reported in ICF1 patients were also detected in two of our ICF1 patients. The mode of treatment and outcome of the French patients are reported, by genetic defect, and compared with those for 68 previously reported ICF patients. Immunoglobulin (Ig) replacement treatment was administered to all nine French patients. One ICF1 patient presented severe autoimmune manifestations and pancytopenia and underwent allogeneic hematopoietic stem cell transplantation (HSCT), but she died from unknown causes 6 years post-transplant. CONCLUSION: Autoimmune signs are uncommon in ICF syndrome, but, when present, they affect patient outcome and require immunosuppressive treatment. The long-term outcome of ICF patients has been improved by the combination of IgG replacement and antibiotic prophylaxis.


Assuntos
Predisposição Genética para Doença , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Fenótipo , Autoimunidade , Criança , Pré-Escolar , Gerenciamento Clínico , Feminino , França/epidemiologia , Testes Genéticos , Humanos , Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/terapia , Testes Imunológicos , Lactente , Recém-Nascido , Infecções/etiologia , Masculino , Mutação , Avaliação de Resultados em Cuidados de Saúde , Vigilância da População
17.
Br J Cancer ; 113(5): 773-85, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26196186

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) is a multifunctional cytokine that has important roles in angiogenesis. Our knowledge of the significance of VEGF isoforms in human cancer remains incomplete. METHODS: Bioluminescence imaging and transcriptomic analysis were used to study the colonisation capacity of the human breast cancer cells MDA-MB-231 controlling or overexpressing the VEGF165 or VEGF189 isoform (named cV-B, V165-B and V189-B, respectively) in nude mice. RESULTS: When injected into the bloodstream, V189-B cells induced less metastasis in the lungs and bone than V165-B and cV-B control cells, consistent with longer survival of these mice and delay in tumour uptake in the mice injected with a V189-B clone. Histological analysis confirmed that there were less αSMA-positive cells in the lungs of the mice injected with V189-B. In vitro V189-B cells decreased both cell invasion and survival. Using transcriptomic analysis, we identified a subset of 18 genes expressed differentially between V189 and V165 cell lines and in 120 human breast tumours. V165 was associated with poor prognosis, whereas V189 was not, suggesting a complex regulation by VEGF isoforms. Our results showed a negative correlation between the expression pattern of VEGF189 and the levels of expression of seven genes that influence metastasis. CONCLUSION: Our findings provide the first evidence that VEGF isoforms have different effects on breast cancer cell line colonisation in vivo.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Área Sob a Curva , Comunicação Autócrina , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/secundário , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Neuropilina-1/metabolismo , Isoformas de Proteínas/metabolismo , Transcriptoma
18.
Nat Commun ; 6: 7870, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26216346

RESUMO

The life-threatening Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome is a genetically heterogeneous autosomal recessive disorder. Twenty percent of patients cannot be explained by mutations in the known ICF genes DNA methyltransferase 3B or zinc-finger and BTB domain containing 24. Here we report mutations in the cell division cycle associated 7 and the helicase, lymphoid-specific genes in 10 unexplained ICF cases. Our data highlight the genetic heterogeneity of ICF syndrome; however, they provide evidence that all genes act in common or converging pathways leading to the ICF phenotype.


Assuntos
DNA Helicases/genética , Face/anormalidades , Síndromes de Imunodeficiência/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Mutação de Sentido Incorreto , Doenças da Imunodeficiência Primária , Adulto Jovem
19.
Biology (Basel) ; 3(3): 578-605, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25198254

RESUMO

The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential contribution of these deregulated protein-coding and non-coding transcription programs to the perturbation of cellular phenotypes.

20.
Orphanet J Rare Dis ; 9: 56, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24742017

RESUMO

BACKGROUND: Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. METHOD: We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. RESULTS: We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. CONCLUSIONS: Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust biomarkers identified in this study could be introduced into routine clinical immunology or neurology departments to facilitate testing of patients with suspected ICF syndrome. In addition, as exemplified by two patients with a combination of molecular defects never described before, our data support the search for new types of mutations at the origin of ICF syndrome.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica , Células Germinativas , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/genética , Animais , Proteínas de Transporte/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Feminino , Humanos , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/diagnóstico , Masculino , Camundongos , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...